Historias de clientes / Sector automotriz
BMW Group utiliza un lago de datos basado en AWS para liberar el poder de los datos
BMW Grupo utiliza AWS para procesar 10 TB de datos diariamente de 1,2 millones de vehículos, crear un asistente personal en los vehículos activado por voz y obtener información en tiempo real a partir de los datos de telemetría de vehículos y clientes. La organización, con sede en Alemania, es líder en la fabricación de automóviles y motocicletas de alta gama. BMW Group ejecuta su centro de datos en la nube en AWS mediante Amazon SageMaker para entrenar modelos de análisis predictivo.
Democratiza el uso
Procesa terabytes
Resuelve los problemas
Acelera
Información general
BMW Group, con sede en Múnich (Alemania), es un fabricante mundial de automóviles y motocicletas de alta gama. Entre sus marcas, se encuentran BMW, BMW Motorrad, MINI y Rolls-Royce. También ofrece servicios financieros y de movilidad de calidad superior.
En los últimos años, BMW Group ha trabajado para mantenerse a la vanguardia de la transformación digital del sector de la automoción mediante el uso de datos y análisis predictivos. Según Kai Demtröder, vicepresidente de transformación de datos, inteligencia artificial, plataformas de datos y DevOps de BMW Group, “para seguir siendo innovadores, nos estamos centrando en crear experiencias digitales nuevas y conectadas e impulsar el cambio en nuestra cadena de valor para mejorar tanto la eficiencia como la eficacia al permitir decisiones basadas en datos”. En 2015, para generar estas innovaciones, BMW Group creó un lago de datos centralizado en las instalaciones que recopila y combina datos anónimos de sensores en vehículos, sistemas operativos y almacenamientos de datos para obtener información histórica, en tiempo real y predictiva.
BMW Group también buscó brindar a los consumidores de datos acceso en tiempo real, por ejemplo, a la telemetría del vehículo, como información sobre velocidad, ubicación, temperatura, niveles de batería y freno, y estado del motor. Además, quería integrar el análisis y el machine learning en el lago de datos para acelerar el desarrollo de servicios nuevos e innovadores. Y, como requisito básico, la solución tendría que ofrecer la gobernanza necesaria para garantizar el cumplimiento de la normativa sobre privacidad y seguridad.
“Acabamos de iniciar nuestro viaje con AWS y esperamos ayudar a nuestra empresa a cumplir su estrategia de impulsar la innovación en el futuro”.
Kai Demtröder
Vicepresidente de Transformación de Datos, Inteligencia Artificial, Datos y Plataformas DevOps
BMW Group
Oportunidad | Impulso de un enfoque controlado por datos
En respuesta a estos desafíos, BMW Group decidió rediseñar y trasladar su lago de datos en las instalaciones a la nube de Amazon Web Services (AWS). El Centro de datos en la nube (CDH) de la empresa procesa y combina datos anónimos procedentes de los sensores de los vehículos y de otras fuentes de la empresa para que los equipos internos que crean aplicaciones internas y dirigidas al cliente puedan acceder a ellos fácilmente. En última instancia, la empresa descubrió que AWS ofrecía la agilidad y la flexibilidad que necesitaba, junto con el espacio necesario para brindar soporte a los usuarios de todo el mundo.
Antes de la migración, el rígido lago de datos local de BMW Group no pudo satisfacer las necesidades cada vez mayores de los ingenieros y analistas de datos. Al ejecutar flujos de trabajo interdependientes, el antiguo lago de datos no podía manejar bien varios inquilinos y, como consecuencia, los equipos de plataforma, ingesta y caso de uso de BMW Group requerían una coordinación compleja para trabajar en proyectos y se encontraron con cuellos de botella organizacionales, lo que redujo su ritmo.
BMW Group recurrió a una combinación de AWS Managed Services, incluidos Amazon Athena, Amazon Simple Storage Service (Amazon S3), Amazon Kinesis Data Firehose y AWS Glue, para reducir la complejidad de la configuración al diferenciar los componentes y crear un entorno capaz de escalar a fin de satisfacer las necesidades de los ingenieros de datos. Además, los equipos ahora podrían tener su propio proceso DevOps integral, lo que les otorga la autonomía y la agilidad necesarias para seguir innovando. Además, BMW Group implementó un portal web moderno que ayuda a los usuarios del CDH a descubrir conjuntos de datos confiables mediante un algoritmo de búsqueda avanzada y consultar datos fácilmente para generar información nueva.
Solución | Democratización del uso de datos a escala
Con los servicios de AWS, BMW Group incorpora una cantidad masiva de datos todos los días. En la actualidad, millones de vehículos BMW y MINI están conectados al CDH a través del backend de alta seguridad de BMW Group y se procesan diariamente terabytes de datos telemétricos anónimos. La empresa utiliza estos datos para monitorear los indicadores de estado de los vehículos, como los errores de control de revisión, e identificar posibles problemas en todas las líneas de vehículos. Esto permite que BMW Group aproveche los datos de la flota capturados, recopilados y refinados del CDH para resolver mejor los problemas, incluso antes de que afecten a los clientes.
Para administrar mejor estos datos, BMW Group presentó la noción de “proveedores de datos” y “consumidores de datos” a fin de aumentar tanto la autonomía como la agilidad de sus equipos de ingeniería de software. Los proveedores de datos incorporan y transforman datos con servicios de AWS, como Amazon Kinesis Data Firehose, AWS Lambda, AWS Glue y Amazon EMR. Los consumidores de datos pueden utilizar servicios como Amazon Athena, Amazon SageMaker, AWS Glue y Amazon EMR a fin de aprovechar los datos para sus casos de uso. Tanto los proveedores como los consumidores utilizan estos servicios en sus propias cuentas y solo comparten interfaces bien definidas que se pueden controlar mediante una API central, lo que contribuye a evitar los cuellos de botella. Las capas de datos individuales se almacenan en buckets de Amazon S3 y sus esquemas se registran en AWS Glue Data Catalog.
Además de recopilar metadatos técnicos en AWS Glue Data Catalog, BMW Group descubrió que crear un catálogo de datos legibles por humanos era esencial para democratizar los datos en toda la organización. Esta esfuerzo garantizaría un alto nivel de transparencia acerca de qué activos de datos se recopilan en el CDH y cómo se recopilan. La aplicación frontend Data Portal sirve como explorador de datos para aumentar la productividad de los analistas de datos, los científicos de datos y los ingenieros al mostrar claramente los recursos de datos y ofrecer un “índice de popularidad” basado en patrones de uso de datos para más de 500 usuarios en toda la organización.
Además, el CDH aprovecha GraphQL a través de AWS AppSync a fin de crear API escalables y universales para proveedores de datos y consumidores por igual, lo que aumenta la flexibilidad de desarrollo. A diferencia de las API REST tradicionales, las interfaces basadas en GraphQL resultan muy adecuadas a fin de respaldar requisitos evolutivos tales como la representación de metadatos para el catálogo de datos o el suministro de datos heterogéneos obtenidos de vehículos conectados. Los desarrolladores tienen la flexibilidad de definir la estructura de la carga útil y los parámetros de consulta a fin de obtener los datos que necesitan para un caso de uso determinado. Esto los ayuda a crear aplicaciones mucho más rápido que antes porque ya no tienen que crear un nuevo conjunto de API para cada proyecto con un conjunto diferente de requisitos de datos.
Resultado | Aceleración de la innovación
El lago de datos centralizado y basado en AWS constituye el fundamento de BMW Group para desarrollar soluciones de TI controladas por datos y permite a la empresa escalar de forma automática e independiente en una arquitectura sin servidores. Por lo tanto, puede innovar más rápido que con la solución local anterior, que requería administración de infraestructura y planificación de capacidad para cada iniciativa nueva.
BMW Group liberará el código de componentes clave relacionados con el CDH, incluidas sus API, arquitectura y portal de datos. Esto también se ve impulsado por el hecho de que BMW Group es miembro por primera vez de Gaia-X, la iniciativa europea para establecer espacios de datos soberanos.
En el futuro, BMW Group seguirá escalando horizontalmente las capacidades de la plataforma de CDH para acelerar aún más su transformación digital e impulsar un valor adicional en todo el negocio, lo que potencia las experiencias innovadoras para los clientes, nuevos servicios de movilidad e información comercial interna. Demtröder concluye, “Acabamos de iniciar nuestro viaje con AWS y esperamos ayudar a nuestra empresa a cumplir su estrategia de impulsar la innovación en el futuro”.
Para obtener más información, consulte aws.amazon.com/automotive.
Figura 1: Información general de la arquitectura del CDH
Figura 2: Vista del portal de CDH
Acerca de BMW Group
Con sus cuatro marcas (BMW, MINI, Rolls-Royce y BMW Motorrad), BMW Group es un fabricante líder de automóviles y motocicletas de alta gama. La empresa también ofrece servicios financieros y de movilidad de calidad superior.
Servicios de AWS utilizados
Amazon Kinesis Data Firehose
Amazon Kinesis Data Firehose ofrece la manera más sencilla para cargar datos de streaming de manera confiable en lagos de datos, almacenes de datos y servicios de análisis. Puede registrar, transformar y entregar datos de streaming en Amazon S3, Amazon Redshift, Amazon Elasticsearch Service, puntos de enlace HTTP genéricos y proveedores de servicios como Datadog, New Relic, MongoDB y Splunk.
Amazon SageMaker
Amazon SageMaker es un servicio completamente administrado que brinda a todos los científicos de datos y desarrolladores la capacidad de crear, entrenar e implementar modelos de aprendizaje automático de forma rápida. SageMaker elimina las tareas arduas de cada paso del proceso de aprendizaje automático para que sea más fácil crear modelos de alta calidad.
AWS AppSync
AWS AppSync es un servicio completamente administrado que facilita el desarrollo de API de GraphQL ya que se encarga de la ardua tarea de conectar de manera segura los orígenes de datos como AWS DynamoDB, Lambda y más. Una vez que se implementa, AWS AppSync escala de forma automática su motor de ejecución de API de GraphQL hacia arriba y hacia abajo para cumplir con los volúmenes solicitados de API.
AWS Glue
AWS Glue es un servicio de extracción, transformación y carga (ETL) completamente administrado que ayuda a los clientes a preparar y cargar los datos para su análisis.
Descubra el proceso de innovación de BMW Group con AWS
Más historias de BMW Group
Comenzar
Organizaciones de todos los tamaños y de todos los sectores transforman sus negocios y cumplen sus misiones todos los días con AWS. Contacte nuestros expertos y comience hoy mismo su propia jornada en AWS.