Free Tier

As part of the AWS Free Tier, you can get started with SageMaker Ground Truth for free. For the first two months after the first use of Amazon SageMaker, your first 500 objects labeled per month are free (excluding any additional costs incurred by using a labeling vendor or Amazon Mechanical Turk).

Amazon SageMaker Ground Truth Plus pricing details

Amazon SageMaker Ground Truth Plus helps you create high-quality ML training datasets without having to build labeling applications or manage the labeling workforce on your own. SageMaker Ground Truth Plus is priced on a per-label basis, which can be a bounding box, cuboid, key-value pair, and more.

With SageMaker Ground Truth Plus, you receive a custom quote that is tailored to your specific use case and requirements. To get your customized quote, fill out the project requirement form.

Amazon SageMaker Ground Truth pricing details

Amazon SageMaker Ground Truth helps you build training datasets for ML. SageMaker Ground Truth will label your content (images, audio, text, etc.) by guiding a human labeler step-by-step in a process called a workflow. Three groups of humans can provide labels using these workflows: Amazon Mechanical Turk workers, your employees, or third-party vendors. SageMaker Ground Truth can also learn from these labels and label objects automatically.

You pay for each labeled object (such as an image, an audio recording, or a section of text) whether it’s labeled automatically by SageMaker Ground Truth or by a human labeler. If you use a vendor or Mechanical Turk to provide labels, you pay an additional cost per labeled object. If you use your employees for labeling, there is no additional cost per labeled object.

Object pricing details

You are charged for the number of dataset objects that are reviewed. A dataset object is defined as an atomic unit of data across all modalities.

Reviewed objects (images, video frames, text documents, audio files, etc.)

3D point clouds

Labor pricing details

Built-in workflow with Amazon Mechanical Turk

If you use Amazon Mechanical Turk for labeling, you are charged per object per review instance. We recommend that you use multiple labelers per object to improve label accuracy.

Vendor

If you use a vendor, the cost per label is set by the vendor. You can see each vendor’s pricing details in AWS Marketplace

Amazon SageMaker Ground Truth pricing examples

Using internal employees for human labeling

A manufacturing company uses ML to classify images of their products. To train their model, they label 40,000 images with product names. Using the built-in workflow for image classification, their employees label all 40,000 images.

Because the company used internal employees, the price for the 40,000 human-labeled images is the same $0.08 per image.

Total Cost = 40,000 human-labeled images x $0.08 per image = $3,200

Using Mechanical Turk for human labeling with a custom workflow

An advertising company uses ML to determine both the sentiment and content of social media posts. To train their model, they decide that they need to label 85,000 posts. They decide to build and upload a custom workflow and set a payment of $0.036 per post. They also decide to have each post labeled three times to improve the accuracy of the labels. Using SageMaker Ground Truth, humans label 85,000 posts.

Because the company used Mechanical Turk, the cost includes an additional charge of $0.036 for each human-labeled post to pay the labeler.

Total Cost = (50,000 x $0.08 per article) + (35,000 posts x $0.04 per post) + (85,000 human-labeled posts x $0.036 per post x 3 labelers per object) = $14,580

Using Mechanical Turk for human labeling with a built-in workflow

A publishing company uses ML to build a natural language processing application to classify newspaper articles. To train their model, they label 200,000 articles. They select the built-in text classification workflow and decide to have each article labeled three times to improve the accuracy of the labels. Using SageMaker Ground Truth, humans label 40,000 articles, and 160,000 are labeled automatically.

Because the company used Mechanical Turk, the text classification workflow included an additional charge of $0.012 for each human-labeled article to pay the labeler.

Total Cost = (50,000 x $0.08 per article) + (150,000 articles x $0.04 per article) + (40,000 human-labeled articles x $0.012 per article x 3 labelers per object) + Amazon SageMaker training & inference costs** = $11,440 + Amazon SageMaker training & inference costs**

**These costs depend on a variety of factors, including the type of dataset being used, the type of labeling task, and the resolution of the images in your dataset.

Additional pricing resources

AWS Pricing Calculator

Easily calculate your monthly costs with AWS.

Get pricing assistance

Contact AWS specialists to get a personalized quote.