AWS Big Data Blog

How EUROGATE established a data mesh architecture using Amazon DataZone

In this post, we show you how EUROGATE uses AWS services, including Amazon DataZone, to make data discoverable by data consumers across different business units so that they can innovate faster. Two use cases illustrate how this can be applied for business intelligence (BI) and data science applications, using AWS services such as Amazon Redshift and Amazon SageMaker.

Juicebox recruits Amazon OpenSearch Service’s vector database for improved talent search

Juicebox is an AI-powered talent sourcing search engine, using advanced natural language models to help recruiters identify the best candidates from a vast dataset of over 800 million profiles. At the core of this functionality is Amazon OpenSearch Service, which provides the backbone for Juicebox’s powerful search infrastructure, enabling a seamless combination of traditional full-text search methods with modern, cutting-edge semantic search capabilities. In this post, we share how Juicebox uses OpenSearch Service for improved search.

Build a high-performance quant research platform with Apache Iceberg

In our previous post Backtesting index rebalancing arbitrage with Amazon EMR and Apache Iceberg, we showed how to use Apache Iceberg in the context of strategy backtesting. In this post, we focus on data management implementation options such as accessing data directly in Amazon Simple Storage Service (Amazon S3), using popular data formats like Parquet, or using open table formats like Iceberg. Our experiments are based on real-world historical full order book data, provided by our partner CryptoStruct, and compare the trade-offs between these choices, focusing on performance, cost, and quant developer productivity.

Cost Optimized Vector Database: Introduction to Amazon OpenSearch Service quantization techniques

This blog post introduces a new disk-based vector search approach that allows efficient querying of vectors stored on disk without loading them entirely into memory. By implementing these quantization methods, organizations can achieve compression ratios of up to 64x, enabling cost-effective scaling of vector databases for large-scale AI and machine learning applications.

Use CI/CD best practices to automate Amazon OpenSearch Service cluster management operations

This post explores how to automate Amazon OpenSearch Service cluster management using CI/CD best practices. It presents two options: the Terraform OpenSearch provider and the Evolution library. The solution demonstrates how to use AWS CDK, Lambda, and CodeBuild to implement automated index template creation and management. By applying these techniques, organizations can improve the consistency, reliability, and efficiency of their OpenSearch operations.

Ingest data from Google Analytics 4 and Google Sheets to Amazon Redshift using Amazon AppFlow

Amazon AppFlow bridges the gap between Google applications and Amazon Redshift, empowering organizations to unlock deeper insights and drive data-informed decisions. In this post, we show you how to establish the data ingestion pipeline between Google Analytics 4, Google Sheets, and an Amazon Redshift Serverless workgroup.

Amazon EMR 7.5 runtime for Apache Spark and Iceberg can run Spark workloads 3.6 times faster than Spark 3.5.3 and Iceberg 1.6.1

The Amazon EMR runtime for Apache Spark offers a high-performance runtime environment while maintaining 100% API compatibility with open source Apache Spark and Apache Iceberg table format. In this post, we demonstrate the performance benefits of using the Amazon EMR 7.5 runtime for Spark and Iceberg compared to open source Spark 3.5.3 with Iceberg 1.6.1 tables on the TPC-DS 3TB benchmark v2.13.

Fitch Group achieves multi-Region resiliency for mission-critical Kafka infrastructure with Amazon MSK Replicator

In this post, we explore how Fitch Group, one of the top credit rating companies, used Amazon MSK and Amazon MSK Replicator to achieve multi-Region resiliency for their mission-critical Kafka infrastructure.