AWS Big Data Blog

Category: Amazon DataZone

HEMA accelerates their data governance journey with Amazon DataZone

HEMA is a household Dutch retail brand name since 1926, providing daily convenience products using unique design. This post describes how HEMA used Amazon DataZone to build their data mesh and enable streamlined data access across multiple business areas. It explains HEMA’s unique journey of deploying Amazon DataZone, the key challenges they overcame, and the transformative benefits they have realized since deployment in May 2024. From establishing an enterprise-wide data inventory and improving data discoverability, to enabling decentralized data sharing and governance, Amazon DataZone has been a game changer for HEMA.

Implement a custom subscription workflow for unmanaged Amazon S3 assets published with Amazon DataZone

In this post, we demonstrate how to implement a custom subscription workflow using Amazon DataZone, Amazon EventBridge, and AWS Lambda to automate the fulfillment process for unmanaged data assets, such as unstructured data stored in Amazon S3. This solution enhances governance and simplifies access to unstructured data assets across the organization.

Building end-to-end data lineage for one-time and complex queries using Amazon Athena, Amazon Redshift, Amazon Neptune and dbt

In this post, we use dbt for data modeling on both Amazon Athena and Amazon Redshift. dbt on Athena supports real-time queries, while dbt on Amazon Redshift handles complex queries, unifying the development language and significantly reducing the technical learning curve. Using a single dbt modeling language not only simplifies the development process but also automatically generates consistent data lineage information. This approach offers robust adaptability, easily accommodating changes in data structures.

How ANZ Institutional Division built a federated data platform to enable their domain teams to build data products to support business outcomes

ANZ Institutional Division has transformed its data management approach by implementing a federated data platform based on data mesh principles. This shift aims to unlock untapped data potential, improve operational efficiency, and increase agility. The new strategy empowers domain teams to create and manage their own data products, treating data as a valuable asset rather than a byproduct. This post explores how the shift to a data product mindset is being implemented, the challenges faced, and the early wins that are shaping the future of data management in the Institutional Division.

Enhance data governance with enforced metadata rules in Amazon DataZone

We’re excited to announce a new feature in Amazon DataZone that offers enhanced metadata governance for your subscription approval process. Using this update, domain owners can define metadata requirements and enforce them on data consumers when they request subscriptions to data assets. By making it mandatory for data consumers to provide specific metadata, domain owners can achieve compliance, meet organizational standards, and support audit and reporting needs.

How Volkswagen Autoeuropa built a data solution with a robust governance framework, simplifying access to quality data using Amazon DataZone

This second post of a two-part series that details how Volkswagen Autoeuropa, a Volkswagen Group plant, together with AWS, built a data solution with a robust governance framework using Amazon DataZone to become a data-driven factory. Part 1 of this series focused on the customer challenges, overall solution architecture and solution features, and how they helped Volkswagen Autoeuropa overcome their challenges. This post dives into the technical details, highlighting the robust data governance framework that enables ease of access to quality data using Amazon DataZone.

How Volkswagen Autoeuropa built a data mesh to accelerate digital transformation using Amazon DataZone

In this post, we discuss how Volkswagen Autoeuropa used Amazon DataZone to build a data marketplace based on data mesh architecture to accelerate their digital transformation. The data mesh, built on Amazon DataZone, simplified data access, improved data quality, and established governance at scale to power analytics, reporting, AI, and machine learning (ML) use cases. As a result, the data solution offers benefits such as faster access to data, expeditious decision making, accelerated time to value for use cases, and enhanced data governance.

Streamline AI-driven analytics with governance: Integrating Tableau with Amazon DataZone

Amazon DataZone recently announced the expansion of data analysis and visualization options for your project-subscribed data within Amazon DataZone using the Amazon Athena JDBC driver. In this post, you learn how the recent enhancements in Amazon DataZone facilitate a seamless connection with Tableau. By integrating Tableau with the comprehensive data governance capabilities of Amazon DataZone, we’re empowering data consumers to quickly and seamlessly explore and analyze their governed data.

Expanding data analysis and visualization options: Amazon DataZone now integrates with Tableau, Power BI, and more

Amazon DataZone now launched authentication support through the  Amazon Athena JDBC driver, allowing data users to seamlessly query their subscribed data lake assets via popular business intelligence (BI) and analytics tools like Tableau, Power BI, Excel, SQL Workbench, DBeaver, and more. This integration empowers data users to access and analyze governed data within Amazon DataZone using familiar tools, boosting both productivity and flexibility.

Demystify data sharing and collaboration patterns on AWS: Choosing the right tool for the job

Adoption of data lakes and the data mesh framework emerges as a powerful approach. By decentralizing data ownership and distribution, enterprises can break down silos and enable seamless data sharing. In this post, we discuss how to choose the right tool for building an enterprise data platform and enabling data sharing, collaboration and access within your organization and with third-party providers. We address three business use cases using AWS Glue, AWS Data Exchange, AWS Clean Rooms, and Amazon DataZone through three different use cases.