AWS Big Data Blog

Category: AWS Glue

Author visual ETL flows on Amazon SageMaker Unified Studio (preview)

Amazon SageMaker Unified Studio (preview) provides an integrated data and AI development environment within Amazon SageMaker. This post shows how you can build a low-code and no-code (LCNC) visual ETL flow that enables seamless data ingestion and transformation across multiple data sources.

Simplify data integration with AWS Glue and zero-ETL to Amazon SageMaker Lakehouse

AWS has introduced zero-ETL integration support from external applications to AWS Glue, simplifying data integration for organizations. This new feature allows for seamless replication of data from popular platforms like Salesforce, ServiceNow, and Zendesk into Amazon SageMaker Lakehouse and Amazon Redshift. This blog post demonstrates a use case involving ServiceNow data integration, outlining the process of setting up a connector, creating a zero-ETL integration, and verifying both initial data load and change data capture (CDC). It also highlights the advantages of using Apache Iceberg for data versioning and time travel capabilities within zero-ETL integrations.

How ANZ Institutional Division built a federated data platform to enable their domain teams to build data products to support business outcomes

ANZ Institutional Division has transformed its data management approach by implementing a federated data platform based on data mesh principles. This shift aims to unlock untapped data potential, improve operational efficiency, and increase agility. The new strategy empowers domain teams to create and manage their own data products, treating data as a valuable asset rather than a byproduct. This post explores how the shift to a data product mindset is being implemented, the challenges faced, and the early wins that are shaping the future of data management in the Institutional Division.

Introducing AWS Glue Data Catalog automation for table statistics collection for improved query performance on Amazon Redshift and Amazon Athena

The AWS Glue Data Catalog now automates generating statistics for new tables. These statistics are integrated with the cost-based optimizer (CBO) from Amazon Redshift Spectrum and Amazon Athena, resulting in improved query performance and potential cost savings. In this post, we discuss how the Data Catalog automates table statistics collection and how you can use it to enhance your data platform’s efficiency.

Introducing the HubSpot connector for AWS Glue

This post introduces the new HubSpot managed connector for AWS Glue, and demonstrates how you can integrate HubSpot data into your existing data lake on AWS. By consolidating HubSpot data with data from your AWS accounts and from other SaaS services, you can enhance, analyze, and optionally write the data back to HubSpot, creating a seamless and integrated data experience.

Scaling RISE with SAP data and AWS Glue

AWS Glue OData connector for SAP uses the SAP ODP framework and OData protocol for data extraction. This framework acts in a provider-subscriber model to enable data transfers between SAP systems and non-SAP data targets. This blog post details how you can extract data from SAP and implement incremental data transfer from your SAP source using the SAP ODP OData framework with source delta tokens.

Run Apache XTable in AWS Lambda for background conversion of open table formats

In this post, we explore how Apache XTable, combined with the AWS Glue Data Catalog, enables background conversions between open table formats residing on Amazon S3-based data lakes, with minimal to no changes to existing pipelines, in a scalable and cost-effective way.

Introducing generative AI troubleshooting for Apache Spark in AWS Glue (preview)

This post demonstrates how generative AI troubleshooting for Spark in AWS Glue helps your day-to-day Spark application debugging. It simplifies the debugging process for your Spark applications by using generative AI to automatically identify the root cause of failures and provides actionable recommendations to resolve the issues.

Introducing generative AI upgrades for Apache Spark in AWS Glue (preview)

Today, we are excited to announce the preview of generative AI upgrades for Spark, a new capability that enables data practitioners to quickly upgrade and modernize their Spark applications running on AWS. Starting with Spark jobs in AWS Glue, this feature allows you to upgrade from an older AWS Glue version to AWS Glue version 4.0. This new capability reduces the time data engineers spend on modernizing their Spark applications, allowing them to focus on building new data pipelines and getting valuable analytics faster.

AWS Glue Data Catalog supports automatic optimization of Apache Iceberg tables through your Amazon VPC

The AWS Glue Data Catalog supports automatic table optimization of Apache Iceberg tables, including compaction, snapshots, and orphan data management. The data compaction optimizer constantly monitors table partitions and kicks off the compaction process when the threshold is exceeded for the number of files and file sizes. This post demonstrates how it works with step-by-step instructions.