AWS Database Blog

Category: Amazon OpenSearch Service

Vector search for Amazon DynamoDB with zero ETL for Amazon OpenSearch Service

As organizations increasingly rely on Amazon DynamoDB for their operational database needs, the demand for advanced data insights and enhanced search capabilities continues to grow. Leveraging the power of Amazon OpenSearch Service and Amazon Bedrock, you can now unlock generative artificial intelligence (AI) capabilities for your DynamoDB data. In this post, we show how you […]

How Prisma Cloud built Infinity Graph using Amazon Neptune and Amazon OpenSearch Service

Palo Alto Network’s Prisma Cloud is a leading cloud security platform protecting enterprise cloud adoption from code to cloud workflows. Palo Alto Networks chose Amazon Neptune Database and Amazon OpenSearch Service as the core services to power its Infinity Graph. In this post, we discuss the scale Palo Alto Networks requires from these core services and how we were able to design a solution to meet these needs. We focus on the Neptune design decisions and benefits, and explain how OpenSearch Service fits into the design without diving into implementation details.

Make relevant movie recommendations using Amazon Neptune, Amazon Neptune Machine Learning, and Amazon OpenSearch Service

In this post, we discuss a design for a highly searchable movie content graph database built on Amazon Neptune, a managed graph database service. We demonstrate how to build a list of relevant movies matching a user’s search criteria through the powerful combination of lexical, semantic, and graphical similarity methods using Neptune, Amazon OpenSearch Service, and Neptune Machine Learning. To match, we compare movies with similar text as well as similar vector embeddings. We use both sentence and graph neural network (GNN) models to build these embeddings.

Achieve near real-time analytics with Amazon DynamoDB and zero-ETL for Amazon OpenSearch Service

In this post, we explore how to transition from using Rockset to OpenSearch Service for your DynamoDB use-case effectively. To illustrate this integration, we consider a real-world example of a gaming company that tracks user interactions, such as in-game purchases and player scores, using DynamoDB. This data needs to be analyzed in real time to provide insights into user behavior, detect anomalies, and personalize the gaming experience.

Privileged Database User Activity Monitoring using Database Activity Streams(DAS) and Amazon OpenSearch Service

In this post, we demonstrate how to create a centralized monitoring solution using Database Activity Streams and Amazon OpenSearch Service to meet audit requirements. The solution enables the security team to gather audit data from several Kinesis data streams, enrich, process, and store it with retention to meet compliance requirements, and produce relevant alarms and dashboards.

Find and link similar entities in a knowledge graph using Amazon Neptune, Part 1: Full-text search

A knowledge graph combines data from many sources and links related entities. Because a knowledge graph is a gathering place for connected data, we expect many of its entities to be similar. When we find that two entities are similar to each other, we can materialize that fact as a relationship between them. In this […]

Perform fuzzy full-text search and semantic search on Amazon DocumentDB using Amazon OpenSearch Service

In this post, we show you how to integrate Amazon DocumentDB (with MongoDB compatibility) with Amazon OpenSearch Service using AWS Lambda integration and run full-text search, fuzzy search, and synonym search on an artificially generated reviews dataset. Amazon DocumentDB is a fast, scalable, highly durable, and fully managed database service for operating mission-critical MongoDB API-compatible […]

The role of vector databases in generative AI applications

August, 2024: This post has been updated to reflect advances in technology and new features AWS released, to help you on your generative AI journey. Generative artificial intelligence (AI) has captured our imagination and is transforming industries with its ability to answer questions, write stories, create art, and generate code. AWS customers are increasingly asking […]

How CSC Generation powers product discovery with knowledge graphs using Amazon Neptune

This post is co-written with Bobber Cheng and Ronit Rudra from CSC Generation. CSC Generation is a company that focuses on acquiring overlooked stores and catalog-based retailers and transforming them into high-performance, digital-first brands. As we grew through multiple acquisitions, it became apparent that our legacy product information system (PIM), backed by relational databases, was […]

Combine Amazon Neptune and Amazon OpenSearch Service for geospatial queries

Many AWS customers are looking to solve their business problems by storing and integrating data across a combination of purpose-built databases. The reason for that is purpose-built databases provide innovative ways to build data access patterns that would be challenging or inefficient to solve otherwise. For example, we can model highly connected geospatial data as […]