AWS Machine Learning Blog

Category: Artificial Intelligence

Build and deploy a UI for your generative AI applications with AWS and Python

AWS provides a powerful set of tools and services that simplify the process of building and deploying generative AI applications, even for those with limited experience in frontend and backend development. In this post, we explore a practical solution that uses Streamlit, a Python library for building interactive data applications, and AWS services like Amazon Elastic Container Service (Amazon ECS), Amazon Cognito, and the AWS Cloud Development Kit (AWS CDK) to create a user-friendly generative AI application with authentication and deployment.

Unearth insights from audio transcripts generated by Amazon Transcribe using Amazon Bedrock

In this post, we examine how to create business value through speech analytics with some examples focused on the following: 1) automatically summarizing, categorizing, and analyzing marketing content such as podcasts, recorded interviews, or videos, and creating new marketing materials based on those assets, 2) automatically extracting key points, summaries, and sentiment from a recorded meeting (such as an earnings call), and 3) transcribing and analyzing contact center calls to improve customer experience.

Best practices and lessons for fine-tuning Anthropic’s Claude 3 Haiku on Amazon Bedrock

Best practices and lessons for fine-tuning Anthropic’s Claude 3 Haiku on Amazon Bedrock

In this post, we explore the best practices and lessons learned for fine-tuning Anthropic’s Claude 3 Haiku on Amazon Bedrock. We discuss the important components of fine-tuning, including use case definition, data preparation, model customization, and performance evaluation.

Track, allocate, and manage your generative AI cost and usage with Amazon Bedrock

Amazon Bedrock has launched a capability that organizations can use to tag on-demand models and monitor associated costs. Organizations can now label all Amazon Bedrock models with AWS cost allocation tags, aligning usage to specific organizational taxonomies such as cost centers, business units, and applications.

Architecture diagram of solution

How Druva used Amazon Bedrock to address foundation model complexity when building Dru, Druva’s backup AI copilot

Druva enables cyber, data, and operational resilience for thousands of enterprises, and is trusted by 60 of the Fortune 500. In this post, we show how Druva approached natural language querying (NLQ)—asking questions in English and getting tabular data as answers—using Amazon Bedrock, the challenges they faced, sample prompts, and key learnings.

High-level design of the solution

Create a generative AI–powered custom Google Chat application using Amazon Bedrock

AWS offers powerful generative AI services, including Amazon Bedrock, which allows organizations to create tailored use cases such as AI chat-based assistants that give answers based on knowledge contained in the customers’ documents, and much more. Many businesses want to integrate these cutting-edge AI capabilities with their existing collaboration tools, such as Google Chat, to […]

Amazon Q with Gmail - Architecture

Discover insights from Gmail using the Gmail connector for Amazon Q Business

A number of organizations use Gmail for their business email needs. Gmail for business is part of Google Workspace, which provides a set of productivity and collaboration tools like Google Drive, Gmail, and Google Calendar. Google Drive supports storing documents such as Emails contain a wealth of information found in different places, such as within […]

Accelerate custom labeling workflows in Amazon SageMaker Ground Truth without using AWS Lambda

Amazon SageMaker Ground Truth enables the creation of high-quality, large-scale training datasets, essential for fine-tuning across a wide range of applications, including large language models (LLMs) and generative AI. By integrating human annotators with machine learning, SageMaker Ground Truth significantly reduces the cost and time required for data labeling. Whether it’s annotating images, videos, or […]

Unlock organizational wisdom using voice-driven knowledge capture with Amazon Transcribe and Amazon Bedrock

This post introduces an innovative voice-based application workflow that harnesses the power of Amazon Bedrock, Amazon Transcribe, and React to systematically capture and document institutional knowledge through voice recordings from experienced staff members. Our solution uses Amazon Transcribe for real-time speech-to-text conversion, enabling accurate and immediate documentation of spoken knowledge. We then use generative AI, powered by Amazon Bedrock, to analyze and summarize the transcribed content, extracting key insights and generating comprehensive documentation.