AWS Machine Learning Blog
Category: Amazon SageMaker Data Wrangler
Import data from Google Cloud Platform BigQuery for no-code machine learning with Amazon SageMaker Canvas
This post presents an architectural approach to extract data from different cloud environments, such as Google Cloud Platform (GCP) BigQuery, without the need for data movement. This minimizes the complexity and overhead associated with moving data between cloud environments, enabling organizations to access and utilize their disparate data assets for ML projects. We highlight the process of using Amazon Athena Federated Query to extract data from GCP BigQuery, using Amazon SageMaker Data Wrangler to perform data preparation, and then using the prepared data to build ML models within Amazon SageMaker Canvas, a no-code ML interface.
Migrate Amazon SageMaker Data Wrangler flows to Amazon SageMaker Canvas for faster data preparation
This post demonstrates how you can bring your existing SageMaker Data Wrangler flows—the instructions created when building data transformations—from SageMaker Studio Classic to SageMaker Canvas. We provide an example of moving files from SageMaker Studio Classic to Amazon Simple Storage Service (Amazon S3) as an intermediate step before importing them into SageMaker Canvas.
Use weather data to improve forecasts with Amazon SageMaker Canvas
Photo by Zbynek Burival on Unsplash Time series forecasting is a specific machine learning (ML) discipline that enables organizations to make informed planning decisions. The main idea is to supply historic data to an ML algorithm that can identify patterns from the past and then use those patterns to estimate likely values about unseen periods […]
Prioritizing employee well-being: An innovative approach with generative AI and Amazon SageMaker Canvas
In today’s fast-paced corporate landscape, employee mental health has become a crucial aspect that organizations can no longer overlook. Many companies recognize that their greatest asset lies in their dedicated workforce, and each employee plays a vital role in collective success. As such, promoting employee well-being by creating a safe, inclusive, and supportive environment is […]
Analyze security findings faster with no-code data preparation using generative AI and Amazon SageMaker Canvas
Data is the foundation to capturing the maximum value from AI technology and solving business problems quickly. To unlock the potential of generative AI technologies, however, there’s a key prerequisite: your data needs to be appropriately prepared. In this post, we describe how use generative AI to update and scale your data pipeline using Amazon […]
Accelerate data preparation for ML in Amazon SageMaker Canvas
Data preparation is a crucial step in any machine learning (ML) workflow, yet it often involves tedious and time-consuming tasks. Amazon SageMaker Canvas now supports comprehensive data preparation capabilities powered by Amazon SageMaker Data Wrangler. With this integration, SageMaker Canvas provides customers with an end-to-end no-code workspace to prepare data, build and use ML and […]
Simplify data prep for generative AI with Amazon SageMaker Data Wrangler
Generative artificial intelligence (generative AI) models have demonstrated impressive capabilities in generating high-quality text, images, and other content. However, these models require massive amounts of clean, structured training data to reach their full potential. Most real-world data exists in unstructured formats like PDFs, which requires preprocessing before it can be used effectively. According to IDC, […]
Use foundation models to improve model accuracy with Amazon SageMaker
Determining the value of housing is a classic example of using machine learning (ML). In this post, we discuss the use of an open-source model specifically designed for the task of visual question answering (VQA). With VQA, you can ask a question of a photo using natural language and receive an answer to your question—also in plain language. Our goal in this post is to inspire and demonstrate what is possible using this technology.
Automatically redact PII for machine learning using Amazon SageMaker Data Wrangler
Customers increasingly want to use deep learning approaches such as large language models (LLMs) to automate the extraction of data and insights. For many industries, data that is useful for machine learning (ML) may contain personally identifiable information (PII). To ensure customer privacy and maintain regulatory compliance while training, fine-tuning, and using deep learning models, […]
Prepare your data for Amazon Personalize with Amazon SageMaker Data Wrangler
A recommendation engine is only as good as the data used to prepare it. Transforming raw data into a format that is suitable for a model is key to getting better personalized recommendations for end-users. In this post, we walk through how to prepare and import the MovieLens dataset, a dataset prepared by GroupLens research […]