AWS Machine Learning Blog
Category: AWS Big Data
A review of purpose-built accelerators for financial services
In this post, we aim to provide business leaders with a non-technical overview of purpose-built accelerators (PBAs) and their role within the financial services industry (FSI).
Use LangChain with PySpark to process documents at massive scale with Amazon SageMaker Studio and Amazon EMR Serverless
In this post, we explore how to build a scalable and efficient Retrieval Augmented Generation (RAG) system using the new EMR Serverless integration, Spark’s distributed processing, and an Amazon OpenSearch Service vector database powered by the LangChain orchestration framework. This solution enables you to process massive volumes of textual data, generate relevant embeddings, and store them in a powerful vector database for seamless retrieval and generation.
Intelligent healthcare forms analysis with Amazon Bedrock
In this post, we explore using the Anthropic Claude 3 on Amazon Bedrock large language model (LLM). Amazon Bedrock provides access to several LLMs, such as Anthropic Claude 3, which can be used to generate semi-structured data relevant to the healthcare industry. This can be particularly useful for creating various healthcare-related forms, such as patient intake forms, insurance claim forms, or medical history questionnaires.
Large-scale feature engineering with sensitive data protection using AWS Glue interactive sessions and Amazon SageMaker Studio
Organizations are using machine learning (ML) and AI services to enhance customer experience, reduce operational cost, and unlock new possibilities to improve business outcomes. Data underpins ML and AI use cases and is a strategic asset to an organization. As data is growing at an exponential rate, organizations are looking to set up an integrated, […]