AWS Machine Learning Blog
Category: AWS Identity and Access Management (IAM)
Build private and secure enterprise generative AI applications with Amazon Q Business using IAM Federation
Amazon Q Business is a conversational assistant powered by generative artificial intelligence (AI) that enhances workforce productivity by answering questions and completing tasks based on information in your enterprise systems, which each user is authorized to access. In an earlier post, we discussed how you can build private and secure enterprise generative AI applications with Amazon Q Business and AWS IAM Identity Center. If you want to use Amazon Q Business to build enterprise generative AI applications, and have yet to adopt organization-wide use of AWS IAM Identity Center, you can use Amazon Q Business IAM Federation to directly manage user access to Amazon Q Business applications from your enterprise identity provider (IdP), such as Okta or Ping Identity. Amazon Q Business IAM Federation uses Federation with IAM and doesn’t require the use of IAM Identity Center. This post shows how you can use Amazon Q Business IAM Federation for user access management of your Amazon Q Business applications.
Implement exact match with Amazon Lex QnAIntent
This post is a continuation of Creating Natural Conversations with Amazon Lex QnAIntent and Amazon Bedrock Knowledge Base. In summary, we explored new capabilities available through Amazon Lex QnAIntent, powered by Amazon Bedrock, that enable you to harness natural language understanding and your own knowledge repositories to provide real-time, conversational experiences. In many cases, Amazon […]
Translate multiple source language documents to multiple target languages using Amazon Translate
Enterprises need to translate business-critical content such as marketing materials, instruction manuals, and product catalogs across multiple languages to communicate with a global audience of customers, partners, and stakeholders. Identifying the source language in each document before calling a translate job creates complexities and adds another step to your workflow. For example, an international product […]
Secure Amazon SageMaker Studio presigned URLs Part 1: Foundational infrastructure
You can access Amazon SageMaker Studio notebooks from the Amazon SageMaker console via AWS Identity and Access Management (IAM) authenticated federation from your identity provider (IdP), such as Okta. When a Studio user opens the notebook link, Studio validates the federated user’s IAM policy to authorize access, and generates and resolves the presigned URL for […]
Enable Amazon SageMaker JumpStart for custom IAM execution roles
With an Amazon SageMaker Domain, you can onboard users with an AWS Identity and Access Management (IAM) execution role different than the Domain execution role. In such case, the onboarded Domain user can’t create projects using templates and Amazon SageMaker JumpStart solutions. This post outlines an automated approach to enable JumpStart for Domain users with […]
Create a cross-account machine learning training and deployment environment with AWS Code Pipeline
A continuous integration and continuous delivery (CI/CD) pipeline helps you automate steps in your machine learning (ML) applications such as data ingestion, data preparation, feature engineering, modeling training, and model deployment. A pipeline across multiple AWS accounts improves security, agility, and resilience because an AWS account provides a natural security and access boundary for your […]