AWS Machine Learning Blog

Category: AWS Organizations

Governing the ML lifecycle at scale: Centralized observability with Amazon SageMaker and Amazon CloudWatch

This post is part of an ongoing series on governing the machine learning (ML) lifecycle at scale. To start from the beginning, refer to Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker. A multi-account strategy is essential not only for improving governance but also for enhancing […]

Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker

Customers of every size and industry are innovating on AWS by infusing machine learning (ML) into their products and services. Recent developments in generative AI models have further sped up the need of ML adoption across industries. However, implementing security, data privacy, and governance controls are still key challenges faced by customers when implementing ML […]