AWS Machine Learning Blog
Tag: Neuron
Get started quickly with AWS Trainium and AWS Inferentia using AWS Neuron DLAMI and AWS Neuron DLC
Starting with the AWS Neuron 2.18 release, you can now launch Neuron DLAMIs (AWS Deep Learning AMIs) and Neuron DLCs (AWS Deep Learning Containers) with the latest released Neuron packages on the same day as the Neuron SDK release. When a Neuron SDK is released, you’ll now be notified of the support for Neuron DLAMIs […]
End-to-end LLM training on instance clusters with over 100 nodes using AWS Trainium
In this post, we show you how to accelerate the full pre-training of LLM models by scaling up to 128 trn1.32xlarge nodes, using a Llama 2-7B model as an example. We share best practices for training LLMs on AWS Trainium, scaling the training on a cluster with over 100 nodes, improving efficiency of recovery from system and hardware failures, improving training stability, and achieving convergence.
Scale your machine learning workloads on Amazon ECS powered by AWS Trainium instances
Running machine learning (ML) workloads with containers is becoming a common practice. Containers can fully encapsulate not just your training code, but the entire dependency stack down to the hardware libraries and drivers. What you get is an ML development environment that is consistent and portable. With containers, scaling on a cluster becomes much easier. […]
Scaling Large Language Model (LLM) training with Amazon EC2 Trn1 UltraClusters
Modern model pre-training often calls for larger cluster deployment to reduce time and cost. At the server level, such training workloads demand faster compute and increased memory allocation. As models grow to hundreds of billions of parameters, they require a distributed training mechanism that spans multiple nodes (instances). In October 2022, we launched Amazon EC2 […]
Scaling distributed training with AWS Trainium and Amazon EKS
Recent developments in deep learning have led to increasingly large models such as GPT-3, BLOOM, and OPT, some of which are already in excess of 100 billion parameters. Although larger models tend to be more powerful, training such models requires significant computational resources. Even with the use of advanced distributed training libraries like FSDP and […]