AWS Machine Learning Blog
Align and monitor your Amazon Bedrock powered insurance assistance chatbot to responsible AI principles with AWS Audit Manager
Generative AI applications should be developed with adequate controls for steering the behavior of FMs. Responsible AI considerations such as privacy, security, safety, controllability, fairness, explainability, transparency and governance help ensure that AI systems are trustworthy. In this post, we demonstrate how to use the AWS generative AI best practices framework on AWS Audit Manager to evaluate this insurance claim agent from a responsible AI lens.
London Stock Exchange Group uses Amazon Q Business to enhance post-trade client services
In this blog post, we explore a client services agent assistant application developed by the London Stock Exchange Group (LSEG) using Amazon Q Business. We will discuss how Amazon Q Business saved time in generating answers, including summarizing documents, retrieving answers to complex Member enquiries, and combining information from different data sources (while providing in-text citations to the data sources used for each answer).
Evaluate large language models for your machine translation tasks on AWS
This blog post with accompanying code presents a solution to experiment with real-time machine translation using foundation models (FMs) available in Amazon Bedrock. It can help collect more data on the value of LLMs for your content translation use cases.
Parameta accelerates client email resolution with Amazon Bedrock Flows
In this post, we show you how Parameta used Amazon Bedrock Flows to transform their manual client email processing into an automated, intelligent workflow that reduced resolution times from weeks to days while maintaining high accuracy and operational control.
Efficiently build and tune custom log anomaly detection models with Amazon SageMaker
In this post, we walk you through the process to build an automated mechanism using Amazon SageMaker to process your log data, run training iterations over it to obtain the best-performing anomaly detection model, and register it with the Amazon SageMaker Model Registry for your customers to use it.
Optimizing costs of generative AI applications on AWS
Optimizing costs of generative AI applications on AWS is critical for realizing the full potential of this transformative technology. The post outlines key cost optimization pillars, including model selection and customization, token usage, inference pricing plans, and vector database considerations.
PEFT fine tuning of Llama 3 on SageMaker HyperPod with AWS Trainium
In this blog post, we showcase how you can perform efficient supervised fine tuning for a Meta Llama 3 model using PEFT on AWS Trainium with SageMaker HyperPod. We use HuggingFace’s Optimum-Neuron software development kit (SDK) to apply LoRA to fine-tuning jobs, and use SageMaker HyperPod as the primary compute cluster to perform distributed training on Trainium. Using LoRA supervised fine-tuning for Meta Llama 3 models, you can further reduce your cost to fine tune models by up to 50% and reduce the training time by 70%.
Using transcription confidence scores to improve slot filling in Amazon Lex
When building voice-enabled chatbots with Amazon Lex, one of the biggest challenges is accurately capturing user speech input for slot values. Transcription confidence scores can help ensure reliable slot filling. This blog post outlines strategies like progressive confirmation, adaptive re-prompting, and branching logic to create more robust slot filling experiences.
Improving Retrieval Augmented Generation accuracy with GraphRAG
Lettria, an AWS Partner, demonstrated that integrating graph-based structures into RAG workflows improves answer precision by up to 35% compared to vector-only retrieval methods. In this post, we explore why GraphRAG is more comprehensive and explainable than vector RAG alone, and how you can use this approach using AWS services and Lettria.
Add a generative AI experience to your website or web application with Amazon Q embedded
Amazon Q embedded is a feature that lets you embed a hosted Amazon Q Business assistant on your website or application to create more personalized experiences that boost end-users’ productivity. In this post, we demonstrate how to use the Amazon Q embedded feature to add an Amazon Q Business assistant to your website or web application using basic HTML or React.