AWS Machine Learning Blog
Category: Amazon Bedrock Knowledge Bases
Design multi-agent orchestration with reasoning using Amazon Bedrock and open source frameworks
This post provides step-by-step instructions for creating a collaborative multi-agent framework with reasoning capabilities to decouple business applications from FMs. It demonstrates how to combine Amazon Bedrock Agents with open source multi-agent frameworks, enabling collaborations and reasoning among agents to dynamically execute various tasks. The exercise will guide you through the process of building a reasoning orchestration system using Amazon Bedrock, Amazon Bedrock Knowledge Bases, Amazon Bedrock Agents, and FMs. We also explore the integration of Amazon Bedrock Agents with open source orchestration frameworks LangGraph and CrewAI for dispatching and reasoning.
Multi-tenant RAG with Amazon Bedrock Knowledge Bases
Organizations are continuously seeking ways to use their proprietary knowledge and domain expertise to gain a competitive edge. With the advent of foundation models (FMs) and their remarkable natural language processing capabilities, a new opportunity has emerged to unlock the value of their data assets. As organizations strive to deliver personalized experiences to customers using […]
Cohere Rerank 3.5 is now available in Amazon Bedrock through Rerank API
We are excited to announce the availability of Cohere’s advanced reranking model Rerank 3.5 through our new Rerank API in Amazon Bedrock. This powerful reranking model enables AWS customers to significantly improve their search relevance and content ranking capabilities. In this post, we discuss the need for Reranking, the capabilities of Cohere’s Rerank 3.5, and how to get started using it on Amazon Bedrock.
Create a generative AI assistant with Slack and Amazon Bedrock
Seamless integration of customer experience, collaboration tools, and relevant data is the foundation for delivering knowledge-based productivity gains. In this post, we show you how to integrate the popular Slack messaging service with AWS generative AI services to build a natural language assistant where business users can ask questions of an unstructured dataset.
Reducing hallucinations in large language models with custom intervention using Amazon Bedrock Agents
This post demonstrates how to use Amazon Bedrock Agents, Amazon Knowledge Bases, and the RAGAS evaluation metrics to build a custom hallucination detector and remediate it by using human-in-the-loop. The agentic workflow can be extended to custom use cases through different hallucination remediation techniques and offers the flexibility to detect and mitigate hallucinations using custom actions.