AWS Machine Learning Blog

Category: Amazon SageMaker

Create and fine-tune sentence transformers for enhanced classification accuracy

In this post, we showcase how to fine-tune a sentence transformer specifically for classifying an Amazon product into its product category (such as toys or sporting goods). We showcase two different sentence transformers, paraphrase-MiniLM-L6-v2 and a proprietary Amazon large language model (LLM) called M5_ASIN_SMALL_V2.0, and compare their results.

Governing the ML lifecycle at scale: Centralized observability with Amazon SageMaker and Amazon CloudWatch

This post is part of an ongoing series on governing the machine learning (ML) lifecycle at scale. To start from the beginning, refer to Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker. A multi-account strategy is essential not only for improving governance but also for enhancing […]

Import data from Google Cloud Platform BigQuery for no-code machine learning with Amazon SageMaker Canvas

This post presents an architectural approach to extract data from different cloud environments, such as Google Cloud Platform (GCP) BigQuery, without the need for data movement. This minimizes the complexity and overhead associated with moving data between cloud environments, enabling organizations to access and utilize their disparate data assets for ML projects. We highlight the process of using Amazon Athena Federated Query to extract data from GCP BigQuery, using Amazon SageMaker Data Wrangler to perform data preparation, and then using the prepared data to build ML models within Amazon SageMaker Canvas, a no-code ML interface.

Customized model monitoring for near real-time batch inference with Amazon SageMaker

In this post, we present a framework to customize the use of Amazon SageMaker Model Monitor for handling multi-payload inference requests for near real-time inference scenarios. SageMaker Model Monitor monitors the quality of SageMaker ML models in production. Early and proactive detection of deviations in model quality enables you to take corrective actions, such as retraining models, auditing upstream systems, or fixing quality issues without having to monitor models manually or build additional tooling.

Super charge your LLMs with RAG at scale using AWS Glue for Apache Spark

In this post, we will explore building a reusable RAG data pipeline on LangChain—an open source framework for building applications based on LLMs—and integrating it with AWS Glue and Amazon OpenSearch Serverless. The end solution is a reference architecture for scalable RAG indexing and deployment.

Enhance your Amazon Redshift cloud data warehouse with easier, simpler, and faster machine learning using Amazon SageMaker Canvas

Enhance your Amazon Redshift cloud data warehouse with easier, simpler, and faster machine learning using Amazon SageMaker Canvas

In this post, we dive into a business use case for a banking institution. We will show you how a financial or business analyst at a bank can easily predict if a customer’s loan will be fully paid, charged off, or current using a machine learning model that is best for the business problem at hand.

Create a generative AI-based application builder assistant using Amazon Bedrock Agents

Create a generative AI-based application builder assistant using Amazon Bedrock Agents

Agentic workflows are a fresh new perspective in building dynamic and complex business use- case based workflows with the help of large language models (LLM) as their reasoning engine or brain. In this post, we set up an agent using Amazon Bedrock Agents to act as a software application builder assistant.

Generative AI foundation model training on Amazon SageMaker

Generative AI foundation model training on Amazon SageMaker

In this post, we explore how organizations can cost-effectively customize and adapt FMs using AWS managed services such as Amazon SageMaker training jobs and Amazon SageMaker HyperPod. We discuss how these powerful tools enable organizations to optimize compute resources and reduce the complexity of model training and fine-tuning. We explore how you can make an informed decision about which Amazon SageMaker service is most applicable to your business needs and requirements.

Automate fine-tuning of Llama 3.x models with the new visual designer for Amazon SageMaker Pipelines

Automate fine-tuning of Llama 3.x models with the new visual designer for Amazon SageMaker Pipelines

In this post, we will show you how to set up an automated LLM customization (fine-tuning) workflow so that the Llama 3.x models from Meta can provide a high-quality summary of SEC filings for financial applications. Fine-tuning allows you to configure LLMs to achieve improved performance on your domain-specific tasks.