AWS Machine Learning Blog
Category: Compute
Streamline AWS resource troubleshooting with Amazon Bedrock Agents and AWS Support Automation Workflows
AWS provides a powerful tool called AWS Support Automation Workflows, which is a collection of curated AWS Systems Manager self-service automation runbooks. These runbooks are created by AWS Support Engineering with best practices learned from solving customer issues. They enable AWS customers to troubleshoot, diagnose, and remediate common issues with their AWS resources. In this post, we explore how to use the power of Amazon Bedrock Agents and AWS Support Automation Workflows to create an intelligent agent capable of troubleshooting issues with AWS resources.
Integrate generative AI capabilities into Microsoft Office using Amazon Bedrock
In this blog post, we showcase a powerful solution that seamlessly integrates AWS generative AI capabilities in the form of large language models (LLMs) based on Amazon Bedrock into the Office experience. By harnessing the latest advancements in generative AI, we empower employees to unlock new levels of efficiency and creativity within the tools they already use every day.
Unleash AI innovation with Amazon SageMaker HyperPod
In this post, we show how SageMaker HyperPod, and its new features introduced at AWS re:Invent 2024, is designed to meet the demands of modern AI workloads, offering a persistent and optimized cluster tailored for distributed training and accelerated inference at cloud scale and attractive price-performance.
Reduce conversational AI response time through inference at the edge with AWS Local Zones
This guide demonstrates how to deploy an open source foundation model from Hugging Face on Amazon EC2 instances across three locations: a commercial AWS Region and two AWS Local Zones. Through comparative benchmarking tests, we illustrate how deploying foundation models in Local Zones closer to end users can significantly reduce latency—a critical factor for real-time applications such as conversational AI assistants.
Optimizing AI implementation costs with Automat-it
In this guest post, we explain how AWS Partner Automat-it helped their customer achieve a more than twelvefold cost savings while keeping AI model performance within the required performance thresholds. This was accomplished through careful tuning of architecture, algorithm selection, and infrastructure management.
How Pattern PXM’s Content Brief is driving conversion on ecommerce marketplaces using AI
Pattern is a leader in ecommerce acceleration, helping brands navigate the complexities of selling on marketplaces and achieve profitable growth through a combination of proprietary technology and on-demand expertise. In this post, we share how Pattern uses AWS services to process trillions of data points to deliver actionable insights, optimizing product listings across multiple services.
How Rocket Companies modernized their data science solution on AWS
In this post, we share how we modernized Rocket Companies’ data science solution on AWS to increase the speed to delivery from eight weeks to under one hour, improve operational stability and support by reducing incident tickets by over 99% in 18 months, power 10 million automated data science and AI decisions made daily, and provide a seamless data science development experience.
How Formula 1® uses generative AI to accelerate race-day issue resolution
In this post, we explain how F1 and AWS have developed a root cause analysis (RCA) assistant powered by Amazon Bedrock to reduce manual intervention and accelerate the resolution of recurrent operational issues during races from weeks to minutes. The RCA assistant enables the F1 team to spend more time on innovation and improving its services, ultimately delivering an exceptional experience for fans and partners. The successful collaboration between F1 and AWS showcases the transformative potential of generative AI in empowering teams to accomplish more in less time.
Building a virtual meteorologist using Amazon Bedrock Agents
In this post, we present a streamlined approach to deploying an AI-powered agent by combining Amazon Bedrock Agents and a foundation model (FM). We guide you through the process of configuring the agent and implementing the specific logic required for the virtual meteorologist to provide accurate weather-related responses.
Amazon Q Business simplifies integration of enterprise knowledge bases at scale
In this post, we demonstrate how to build a knowledge base solution by integrating enterprise data with Amazon Q Business using Amazon S3. This approach helps organizations improve operational efficiency, reduce response times, and gain valuable insights from their historical data. The solution uses AWS security best practices to promote data protection while enabling teams to create a comprehensive knowledge base from various data sources.