AWS Machine Learning Blog
Category: Healthcare
Exploring summarization options for Healthcare with Amazon SageMaker
In today’s rapidly evolving healthcare landscape, doctors are faced with vast amounts of clinical data from various sources, such as caregiver notes, electronic health records, and imaging reports. This wealth of information, while essential for patient care, can also be overwhelming and time-consuming for medical professionals to sift through and analyze. Efficiently summarizing and extracting […]
Transform, analyze, and discover insights from unstructured healthcare data using Amazon HealthLake
Healthcare data is complex and siloed, and exists in various formats. An estimated 80% of data within organizations is considered to be unstructured or “dark” data that is locked inside text, emails, PDFs, and scanned documents. This data is difficult to interpret or analyze programmatically and limits how organizations can derive insights from it and […]
New Amazon HealthLake capabilities enable next-generation imaging solutions and precision health analytics
At AWS, we have been investing in healthcare since Day 1 with customers including Moderna, Rush University Medical Center, and the NHS who have built breakthrough innovations in the cloud. From developing public health analytics hubs, to improving health equity and patient outcomes, to developing a COVID-19 vaccine in just 65 days, our customers are utilizing […]
Brain tumor segmentation at scale using AWS Inferentia
Medical imaging is an important tool for the diagnosis and localization of disease. Over the past decade, collections of medical images have grown rapidly, and open repositories such as The Cancer Imaging Archive and Imaging Data Commons have democratized access to this vast imaging data. Computational tools such as machine learning (ML) and artificial intelligence […]
Whitepaper: Machine Learning Best Practices in Healthcare and Life Sciences
For customers looking to implement a GxP-compliant environment on AWS for artificial intelligence (AI) and machine learning (ML) systems, we have released a new whitepaper: Machine Learning Best Practices in Healthcare and Life Sciences. This whitepaper provides an overview of security and good ML compliance practices and guidance on building GxP-regulated AI/ML systems using AWS […]
Build a mental health machine learning risk model using Amazon SageMaker Data Wrangler
This post is co-written by Shibangi Saha, Data Scientist, and Graciela Kravtzov, Co-Founder and CTO, of Equilibrium Point. Many individuals are experiencing new symptoms of mental illness, such as stress, anxiety, depression, substance use, and post-traumatic stress disorder (PTSD). According to Kaiser Family Foundation, about half of adults (47%) nationwide have reported negative mental health […]
How Cortica used Amazon HealthLake to get deeper insights to improve patient care
This is a guest post by Ernesto DiMarino, who is Head of Enterprise Applications and Data at Cortica. Cortica is on a mission to revolutionize healthcare for children with autism and other neurodevelopmental differences. Cortica was founded to fix the fragmented journey families typically navigate while seeking diagnoses and therapies for their children. To bring […]
Build patient outcome prediction applications using Amazon HealthLake and Amazon SageMaker
Healthcare data can be challenging to work with and AWS customers have been looking for solutions to solve certain business challenges with the help of data and machine learning (ML) techniques. Some of the data is structured, such as birthday, gender, and marital status, but most of the data is unstructured, such as diagnosis codes […]
Annotate DICOM images and build an ML model using the MONAI framework on Amazon SageMaker
DICOM (Digital Imaging and Communications in Medicine) is an image format that contains visualizations of X-Rays and MRIs as well as any associated metadata. DICOM is the standard for medical professionals and healthcare researchers for visualizing and interpreting X-Rays and MRIs. The purpose of this post is to solve two problems: Visualize and label DICOM […]
Building predictive disease models using Amazon SageMaker with Amazon HealthLake normalized data
In this post, we walk you through the steps to build machine learning (ML) models in Amazon SageMaker with data stored in Amazon HealthLake using two example predictive disease models we trained on sample data using the MIMIC-III dataset. This dataset was developed by the MIT lab for Computational Physiology and consists of de-identified healthcare […]