AWS Machine Learning Blog
Category: Life Sciences
Advance environmental sustainability in clinical trials using AWS
In this post, we discuss how to use AWS to support a decentralized clinical trial across the four main pillars of a decentralized clinical trial (virtual trials, personalized patient engagement, patient-centric trial design, and centralized data management). By exploring these AWS powered alternatives, we aim to demonstrate how organizations can drive progress towards more environmentally friendly clinical research practices.
Efficiently fine-tune the ESM-2 protein language model with Amazon SageMaker
In this post, we demonstrate how to efficiently fine-tune a state-of-the-art protein language model (pLM) to predict protein subcellular localization using Amazon SageMaker. Proteins are the molecular machines of the body, responsible for everything from moving your muscles to responding to infections. Despite this variety, all proteins are made of repeating chains of molecules called […]
Build protein folding workflows to accelerate drug discovery on Amazon SageMaker
Drug development is a complex and long process that involves screening thousands of drug candidates and using computational or experimental methods to evaluate leads. According to McKinsey, a single drug can take 10 years and cost an average of $2.6 billion to go through disease target identification, drug screening, drug-target validation, and eventual commercial launch. […]
Enable predictive maintenance for line of business users with Amazon Lookout for Equipment
Predictive maintenance is a data-driven maintenance strategy for monitoring industrial assets in order to detect anomalies in equipment operations and health that could lead to equipment failures. Through proactive monitoring of an asset’s condition, maintenance personnel can be alerted before issues occur, thereby avoiding costly unplanned downtime, which in turn leads to an increase in […]
Chronomics detects COVID-19 test results with Amazon Rekognition Custom Labels
Chronomics is a tech-bio company that uses biomarkers—quantifiable information taken from the analysis of molecules—alongside technology to democratize the use of science and data to improve the lives of people. Their goal is to analyze biological samples and give actionable information to help you make decisions—about anything where knowing more about the unseen is important. […]
Use RStudio on Amazon SageMaker to create regulatory submissions for the life sciences industry
Pharmaceutical companies seeking approval from regulatory agencies such as the US Food & Drug Administration (FDA) or Japanese Pharmaceuticals and Medical Devices Agency (PMDA) to sell their drugs on the market must submit evidence to prove that their drug is safe and effective for its intended use. A team of physicians, statisticians, chemists, pharmacologists, and […]
Whitepaper: Machine Learning Best Practices in Healthcare and Life Sciences
For customers looking to implement a GxP-compliant environment on AWS for artificial intelligence (AI) and machine learning (ML) systems, we have released a new whitepaper: Machine Learning Best Practices in Healthcare and Life Sciences. This whitepaper provides an overview of security and good ML compliance practices and guidance on building GxP-regulated AI/ML systems using AWS […]
Build a mental health machine learning risk model using Amazon SageMaker Data Wrangler
This post is co-written by Shibangi Saha, Data Scientist, and Graciela Kravtzov, Co-Founder and CTO, of Equilibrium Point. Many individuals are experiencing new symptoms of mental illness, such as stress, anxiety, depression, substance use, and post-traumatic stress disorder (PTSD). According to Kaiser Family Foundation, about half of adults (47%) nationwide have reported negative mental health […]
Run AlphaFold v2.0 on Amazon EC2
After the article in Nature about the open-source of AlphaFold v2.0 on GitHub by DeepMind, many in the scientific and research community have wanted to try out DeepMind’s AlphaFold implementation firsthand. With compute resources through Amazon Elastic Compute Cloud (Amazon EC2) with Nvidia GPU, you can quickly get AlphaFold running and try it out yourself. […]
Use the AWS Cloud for observational life sciences studies
In this post, we discuss how to use the AWS Cloud and its services to accelerate observational studies for life sciences customers. We provide a reference architecture for architects, business owners, and technology decision-makers in the life sciences industry to automate the processes in clinical studies. Observational studies lead the way in research, allowing you […]