AWS Machine Learning Blog
Category: Advanced (300)
Elevate healthcare interaction and documentation with Amazon Bedrock and Amazon Transcribe using Live Meeting Assistant
Today, physicians spend about 49% of their workday documenting clinical visits, which impacts physician productivity and patient care. Did you know that for every eight hours that office-based physicians have scheduled with patients, they spend more than five hours in the EHR? As a consequence, healthcare practitioners exhibit a pronounced inclination towards conversational intelligence solutions, […]
Improve AI assistant response accuracy using Knowledge Bases for Amazon Bedrock and a reranking model
AI chatbots and virtual assistants have become increasingly popular in recent years thanks the breakthroughs of large language models (LLMs). Trained on a large volume of datasets, these models incorporate memory components in their architectural design, allowing them to understand and comprehend textual context. Most common use cases for chatbot assistants focus on a few […]
Inference AudioCraft MusicGen models using Amazon SageMaker
Music generation models have emerged as powerful tools that transform natural language text into musical compositions. Originating from advancements in artificial intelligence (AI) and deep learning, these models are designed to understand and translate descriptive text into coherent, aesthetically pleasing music. Their ability to democratize music production allows individuals without formal training to create high-quality […]
Build an end-to-end RAG solution using Amazon Bedrock Knowledge Bases and AWS CloudFormation
Retrieval Augmented Generation (RAG) is a state-of-the-art approach to building question answering systems that combines the strengths of retrieval and foundation models (FMs). RAG models first retrieve relevant information from a large corpus of text and then use a FM to synthesize an answer based on the retrieved information. An end-to-end RAG solution involves several […]
Few-shot prompt engineering and fine-tuning for LLMs in Amazon Bedrock
This blog is part of the series, Generative AI and AI/ML in Capital Markets and Financial Services. Company earnings calls are crucial events that provide transparency into a company’s financial health and prospects. Earnings reports detail a firm’s financials over a specific period, including revenue, net income, earnings per share, balance sheet, and cash flow […]
Implement web crawling in Amazon Bedrock Knowledge Bases
Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading artificial intelligence (AI) companies like AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI. With […]
Connect Amazon Q Business to Microsoft SharePoint Online using least privilege access controls
Amazon Q Business is the generative artificial intelligence (AI) assistant that empowers employees with your company’s knowledge and data. Microsoft SharePoint Online is used by many organizations as a secure place to store, organize, share, and access their internal data. With generative AI, employees can get answers to their questions, summarize content, or generate insights […]
Evaluate conversational AI agents with Amazon Bedrock
As conversational artificial intelligence (AI) agents gain traction across industries, providing reliability and consistency is crucial for delivering seamless and trustworthy user experiences. However, the dynamic and conversational nature of these interactions makes traditional testing and evaluation methods challenging. Conversational AI agents also encompass multiple layers, from Retrieval Augmented Generation (RAG) to function-calling mechanisms that […]
LLM experimentation at scale using Amazon SageMaker Pipelines and MLflow
Large language models (LLMs) have achieved remarkable success in various natural language processing (NLP) tasks, but they may not always generalize well to specific domains or tasks. You may need to customize an LLM to adapt to your unique use case, improving its performance on your specific dataset or task. You can customize the model […]
Create custom images for geospatial analysis with Amazon SageMaker Distribution in Amazon SageMaker Studio
This post shows you how to extend Amazon SageMaker Distribution with additional dependencies to create a custom container image tailored for geospatial analysis. Although the example in this post focuses on geospatial data science, the methodology presented can be applied to any kind of custom image based on SageMaker Distribution.