AWS Machine Learning Blog
Category: AWS CloudTrail
Governing the ML lifecycle at scale: Centralized observability with Amazon SageMaker and Amazon CloudWatch
This post is part of an ongoing series on governing the machine learning (ML) lifecycle at scale. To start from the beginning, refer to Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker. A multi-account strategy is essential not only for improving governance but also for enhancing […]
The Weather Company enhances MLOps with Amazon SageMaker, AWS CloudFormation, and Amazon CloudWatch
In this post, we share the story of how The Weather Company (TWCo) enhanced its MLOps platform using services such as Amazon SageMaker, AWS CloudFormation, and Amazon CloudWatch. TWCo data scientists and ML engineers took advantage of automation, detailed experiment tracking, integrated training, and deployment pipelines to help scale MLOps effectively. TWCo reduced infrastructure management time by 90% while also reducing model deployment time by 20%.
AWS CloudTrail integration is now available in Amazon SageMaker
AWS customers have been requesting a way to log activity in Amazon SageMaker, to help you meet your governance and compliance needs. I’m happy to announce that Amazon SageMaker is now integrated with AWS CloudTrail, a service that enables you to log, continuously monitor, and retain account information related to Amazon SageMaker API activity. Amazon […]
AWS CloudTrail Integration is Now Available in Amazon Lex
Amazon Lex is now integrated with AWS CloudTrail, a service that enables you to log, continuously monitor, and retain events related to API calls across your AWS infrastructure, to provide a history of API calls for your account. Amazon Lex API calls are captured from the Amazon Lex console or from your API operations using […]