AWS Machine Learning Blog
Category: Best Practices
Generate financial industry-specific insights using generative AI and in-context fine-tuning
In this blog post, we demonstrate prompt engineering techniques to generate accurate and relevant analysis of tabular data using industry-specific language. This is done by providing large language models (LLMs) in-context sample data with features and labels in the prompt. The results are similar to fine-tuning LLMs without the complexities of fine-tuning models.
Build a multi-tenant generative AI environment for your enterprise on AWS
While organizations continue to discover the powerful applications of generative AI, adoption is often slowed down by team silos and bespoke workflows. To move faster, enterprises need robust operating models and a holistic approach that simplifies the generative AI lifecycle. In the first part of the series, we showed how AI administrators can build a […]
Advance environmental sustainability in clinical trials using AWS
In this post, we discuss how to use AWS to support a decentralized clinical trial across the four main pillars of a decentralized clinical trial (virtual trials, personalized patient engagement, patient-centric trial design, and centralized data management). By exploring these AWS powered alternatives, we aim to demonstrate how organizations can drive progress towards more environmentally friendly clinical research practices.
Brilliant words, brilliant writing: Using AWS AI chips to quickly deploy Meta LLama 3-powered applications
In this post, we will introduce how to use an Amazon EC2 Inf2 instance to cost-effectively deploy multiple industry-leading LLMs on AWS Inferentia2, a purpose-built AWS AI chip, helping customers to quickly test and open up an API interface to facilitate performance benchmarking and downstream application calls at the same time.
Use Amazon SageMaker Studio with a custom file system in Amazon EFS
In this post, we explore three scenarios demonstrating the versatility of integrating Amazon EFS with SageMaker Studio. These scenarios highlight how Amazon EFS can provide a scalable, secure, and collaborative data storage solution for data science teams.
Create a multimodal chatbot tailored to your unique dataset with Amazon Bedrock FMs
In this post, we show how to create a multimodal chat assistant on Amazon Web Services (AWS) using Amazon Bedrock models, where users can submit images and questions, and text responses will be sourced from a closed set of proprietary documents.
Implement model-independent safety measures with Amazon Bedrock Guardrails
In this post, we discuss how you can use the ApplyGuardrail API in common generative AI architectures such as third-party or self-hosted large language models (LLMs), or in a self-managed Retrieval Augmented Generation (RAG) architecture.
Achieve operational excellence with well-architected generative AI solutions using Amazon Bedrock
In this post, we discuss scaling up generative AI for different lines of businesses (LOBs) and address the challenges that come around legal, compliance, operational complexities, data privacy and security.
Best practices for building robust generative AI applications with Amazon Bedrock Agents – Part 1
In this post, we show you how to create accurate and reliable agents. Agents helps you accelerate generative AI application development by orchestrating multistep tasks. Agents use the reasoning capability of foundation models (FMs) to break down user-requested tasks into multiple steps.
Scalable training platform with Amazon SageMaker HyperPod for innovation: a video generation case study
In this post, we share an ML infrastructure architecture that uses SageMaker HyperPod to support research team innovation in video generation. We will discuss the advantages and pain points addressed by SageMaker HyperPod, provide a step-by-step setup guide, and demonstrate how to run a video generation algorithm on the cluster.