AWS Machine Learning Blog

Category: Security, Identity, & Compliance

Configure Amazon Q Business with AWS IAM Identity Center trusted identity propagation

Amazon Q Business comes with rich API support to perform administrative tasks or to build an AI-assistant with customized user experience for your enterprise. With administrative APIs you can automate creating Q Business applications, set up data source connectors, build custom document enrichment, and configure guardrails. With conversation APIs, you can chat and manage conversations with Q Business AI assistant. Trusted identity propagation provides authorization based on user context, which enhances the privacy controls of Amazon Q Business. In this blog post, you will learn what trusted identity propagation is and why to use it, how to automate configuration of a trusted token issuer in AWS IAM Identity Center with provided AWS CloudFormation templates, and what APIs to invoke from your application facilitate calling Amazon Q Business identity-aware conversation APIs.

Q business

Accenture creates a custom memory-persistent conversational user experience using Amazon Q Business

Traditionally, finding relevant information from documents has been a time-consuming and often frustrating process. Manually sifting through pages upon pages of text, searching for specific details, and synthesizing the information into coherent summaries can be a daunting task. This inefficiency not only hinders productivity but also increases the risk of overlooking critical insights buried within […]

Implement exact match with Amazon Lex QnAIntent

This post is a continuation of Creating Natural Conversations with Amazon Lex QnAIntent and Amazon Bedrock Knowledge Base. In summary, we explored new capabilities available through Amazon Lex QnAIntent, powered by Amazon Bedrock, that enable you to harness natural language understanding and your own knowledge repositories to provide real-time, conversational experiences. In many cases, Amazon […]

Connect to Amazon services using AWS PrivateLink in Amazon SageMaker

In this post, we present a solution for configuring SageMaker notebook instances to connect to Amazon Bedrock and other AWS services with the use of AWS PrivateLink and Amazon Elastic Compute Cloud (Amazon EC2) security groups.

Implementing Amazon Bedrock Knowledge Bases in support of GDPR (right to be forgotten) requests

The General Data Protection Regulation (GDPR) right to be forgotten, also known as the right to erasure, gives individuals the right to request the deletion of their personally identifiable information (PII) data held by organizations. This means that individuals can ask companies to erase their personal data from their systems and from the systems of […]

Build private and secure enterprise generative AI apps with Amazon Q Business and AWS IAM Identity Center

As of April 30, 2024 Amazon Q Business is generally available. Amazon Q Business is a conversational assistant powered by generative artificial intelligence (AI) that enhances workforce productivity by answering questions and completing tasks based on information in your enterprise systems. Your employees can access enterprise content securely and privately using web applications built with […]

A secure approach to generative AI with AWS

Generative artificial intelligence (AI) is transforming the customer experience in industries across the globe. Customers are building generative AI applications using large language models (LLMs) and other foundation models (FMs), which enhance customer experiences, transform operations, improve employee productivity, and create new revenue channels. The biggest concern we hear from customers as they explore the advantages of generative AI is how to protect their highly sensitive data and investments. At AWS, our top priority is safeguarding the security and confidentiality of our customers’ workloads. We think about security across the three layers of our generative AI stack …

Large language model inference over confidential data using AWS Nitro Enclaves

This post discusses how Nitro Enclaves can help protect LLM model deployments, specifically those that use personally identifiable information (PII) or protected health information (PHI). This post is for educational purposes only and should not be used in production environments without additional controls.

Architect defense-in-depth security for generative AI applications using the OWASP Top 10 for LLMs

This post provides three guided steps to architect risk management strategies while developing generative AI applications using LLMs. We first delve into the vulnerabilities, threats, and risks that arise from the implementation, deployment, and use of LLM solutions, and provide guidance on how to start innovating with security in mind. We then discuss how building on a secure foundation is essential for generative AI. Lastly, we connect these together with an example LLM workload to describe an approach towards architecting with defense-in-depth security across trust boundaries.

Amazon Security Lake SageMaker IPInsights Solution Architecture

Identify cybersecurity anomalies in your Amazon Security Lake data using Amazon SageMaker

In this post, you learn how to prepare data sourced from Amazon Security Lake, and then train and deploy an ML model using an IP Insights algorithm in SageMaker. This model identifies anomalous network traffic or behavior which can then be composed as part of a larger end-to-end security solution.