AWS Machine Learning Blog
Category: Customer Enablement
Generate training data and cost-effectively train categorical models with Amazon Bedrock
In this post, we explore how you can use Amazon Bedrock to generate high-quality categorical ground truth data, which is crucial for training machine learning (ML) models in a cost-sensitive environment. Generative AI solutions can play an invaluable role during the model development phase by simplifying training and test data creation for multiclass classification supervised learning use cases. We dive deep into this process on how to use XML tags to structure the prompt and guide Amazon Bedrock in generating a balanced label dataset with high accuracy. We also showcase a real-world example for predicting the root cause category for support cases. This use case, solvable through ML, can enable support teams to better understand customer needs and optimize response strategies.
Streamline AWS resource troubleshooting with Amazon Bedrock Agents and AWS Support Automation Workflows
AWS provides a powerful tool called AWS Support Automation Workflows, which is a collection of curated AWS Systems Manager self-service automation runbooks. These runbooks are created by AWS Support Engineering with best practices learned from solving customer issues. They enable AWS customers to troubleshoot, diagnose, and remediate common issues with their AWS resources. In this post, we explore how to use the power of Amazon Bedrock Agents and AWS Support Automation Workflows to create an intelligent agent capable of troubleshooting issues with AWS resources.
Innovating at speed: BMW’s generative AI solution for cloud incident analysis
In this post, we explain how BMW uses generative AI to speed up the root cause analysis of incidents in complex and distributed systems in the cloud such as BMW’s Connected Vehicle backend serving 23 million vehicles. Read on to learn how the solution, collaboratively pioneered by AWS and BMW, uses Amazon Bedrock Agents and Amazon CloudWatch logs and metrics to find root causes quicker. This post is intended for cloud solution architects and developers interested in speeding up their incident workflows.
AWS and DXC collaborate to deliver customizable, near real-time voice-to-voice translation capabilities for Amazon Connect
In this post, we discuss how AWS and DXC used Amazon Connect and other AWS AI services to deliver near real-time V2V translation capabilities.
Unlocking Japanese LLMs with AWS Trainium: Innovators Showcase from the AWS LLM Development Support Program
Since its launch, the LLM Program has welcomed 15 diverse companies and organizations, each with a unique vision for how to use LLMs to drive progress in their respective industries. The program provides comprehensive support through guidance on securing high-performance compute infrastructure, technical assistance and troubleshooting for distributed training, cloud credits, and support for go-to-market. The program also facilitated collaborative knowledge-sharing sessions, where the leading LLM engineers came together to discuss the technical complexities and commercial considerations of their work. This holistic approach enabled participating organizations to rapidly advance their generative AI capabilities and bring transformative solutions to market. Let’s dive in and explore how these organizations are transforming what’s possible with generative AI on AWS.
Elevate your marketing solutions with Amazon Personalize and generative AI
Generative artificial intelligence is transforming how enterprises do business. Organizations are using AI to improve data-driven decisions, enhance omnichannel experiences, and drive next-generation product development. Enterprises are using generative AI specifically to power their marketing efforts through emails, push notifications, and other outbound communication channels. Gartner predicts that “by 2025, 30% of outbound marketing messages […]
How United Airlines built a cost-efficient Optical Character Recognition active learning pipeline
In this post, we discuss how United Airlines, in collaboration with the Amazon Machine Learning Solutions Lab, build an active learning framework on AWS to automate the processing of passenger documents. “In order to deliver the best flying experience for our passengers and make our internal business process as efficient as possible, we have developed […]
How Carrier predicts HVAC faults using AWS Glue and Amazon SageMaker
In this post, we show how the Carrier and AWS teams applied ML to predict faults across large fleets of equipment using a single model. We first highlight how we use AWS Glue for highly parallel data processing. We then discuss how Amazon SageMaker helps us with feature engineering and building a scalable supervised deep learning model.
AWS performs fine-tuning on a Large Language Model (LLM) to classify toxic speech for a large gaming company
The video gaming industry has an estimated user base of over 3 billion worldwide1. It consists of massive amounts of players virtually interacting with each other every single day. Unfortunately, as in the real world, not all players communicate appropriately and respectfully. In an effort to create and maintain a socially responsible gaming environment, AWS […]
How Light & Wonder built a predictive maintenance solution for gaming machines on AWS
This post is co-written with Aruna Abeyakoon and Denisse Colin from Light and Wonder (L&W). Headquartered in Las Vegas, Light & Wonder, Inc. is the leading cross-platform global game company that provides gambling products and services. Working with AWS, Light & Wonder recently developed an industry-first secure solution, Light & Wonder Connect (LnW Connect), to […]